Organic membranous skeleton of the Precambrian metazoans from Namibia

Jerzy Dzik
Instytut Paleobiotologii PAN, Twarda 51/55, 80-818 Warsaw, Poland

ABSTRACT
Unlike the celebrated Ediacara fossils, those from the roughly coeval localities of the Kuhlt Quartzite of Namibia are preserved not as imprints on the sandstone bedding plane, but three-dimensionally, within the rock matrix. The pattern of deformation and the presence of sand in lower parts of the bodies of Ermietta, the most common and typical of those organisms, indicate that their three-dimensional preservation is a result of a density-controlled sinking of sand-filled organic skeletons within hydrated mud layers. Specimens of Ermietta have preserved various stages of migration across the mud beds. Their wall material, as documented by the mode of deformation, was not only flexible, but also elastic, which makes it unlike chitin. The walls thus seem to be proteinaceous, built probably of a collagenous fabric. The Ermietta skeleton was built of series of parallel chambers, which excludes the possibility that these were external body covers. The chambers apparently represent walls of hydraulic skeleton units, resembling the basement membrane of chaetognaths or the notochord sheath of primitive chordates. Such chambers are widespread among the earliest fossil animals represented by fossils preserved in sandstone. The rise and fall of the Ediacaran faunas thus seem to be partially preservation artifacts. The range of its occurrence is a result of two successive evolutionary events: the origin of an internal hydraulic skeleton enclosed by a strong basement membrane, and the appearance of decomposers with abilities to disintegrate such collagenous sheaths.

INTRODUCTION
The fossiliferous horizons of the Kuhlt Quartzite in Namibia are classic fossil localities of highly organized, later Precambrian metazoans (Girlich, 1930, 1933; Richter, 1955; Pfug, 1966, 1972; Glasser, 1979; Hahn and Pfug, 1985; Seilacher, 1994; Geyer and Uchman, 1995). These fossils may range into the Cambrian in Namibia (Groeninger et al., 1995; Narbonne et al., 1997; Jensen et al., 1998). Radiometric dating of their last occurrences is 545 Ma, the same as the age of the Vendian-Cambrian boundary in northern Siberia (Bowring et al., 1993). This concurs with reports on other Cambrian occurrences of related fossil organisms (Conway Morris, 1993).

The original soft tissue is not preserved in the Kuhlt Quartzite fossils; they usually are within unstratified sandstone or mudstone beds that apparently originated instantaneously as a result of a mass flow or storm events (Jenkins, 1985), and their morphology is represented only by sandstone casts of internal body cavities or collapse bodies (Jenkins, 1992; Buss and Seilacher, 1994). The three most common Namibian fossils, Ermietta, Petridium, and Rangoa, are rarely found together.

Current-oriented specimens of Rangoa, with sand-filled bivalves and collapsed fronds, occur within beds of sandstone presumably produced by local mass flows (Jenkins, 1985). Petridium specimens are restricted to storm sand layers, without any preferred horizontal orientation (Jenkins, 1992; Seilacher, 1994). Their basally strongly convex shapes suggest that they were deposited together with the surrounded sediment, and were gradually loaded with sand while sinking. Specimens of Ermietta occur in a dark reddish mudstone with an admixture of coarser sand grains of variable size. Their preservation history was apparently complex but informative, revealing the taphonomic mechanisms involved in the origin of the Namibian-type fossils.

THREE-DIMENSIONAL PRESERVATION OF ERMIETTA
The oval bodies of Ermietta vary greatly in size; the width of the largest specimen, GU PI 308, is 80.5 mm, and the smallest well-preserved specimen, GU PI 488, is 29.5 mm wide. Only one block, GU PI 536, has specimens of Ermietta preserved in situ (Jenkins, 1992). It shows how the numerous drop-like bodies of Ermietta penetrate the mudstone bed from the surface, their blunt ends oriented downward (Fig. 1D). The muddy matrix dominates the space between the specimens, and their interior, exposed in several broken apices, is filled with a harder sandstone of a slightly lighter coloration. The rock matrix between specimens in the block is more or less homogeneous, although there is an indistinct lamination (probably a result of compaction) and a lot of mica near the top of the bed. A distinct stratification of the sediment fill can be seen within particular fossil specimens. The lower parts of several loose sectioned specimens invariably have a pure quartz sand filling, which gradually changes upward into a less-homogeneous sand or mud. The longitudinally cut specimen GU PI 308 exhibits a thin cap of white pure sand at its tip (Birkenmajer, 1958); in its middle there is a mix of a darker mud with white sand that forms small aggregates, and the upper part is filled with homogeneous sand, apparently of the same kind as that around the specimens (Fig. 1C). The gradation suggests that the fill developed in one depositional event, but this does not explain the difference between the composition of the fill and the surrounding sediment matrix.

The disparity between the sediment filling the bodies and that surrounding them is remarkable and requires a special explanation. A possibility that empty cavities left by decaying Ermietta bodies were gradually filled by the sediment coming from above can be rejected, because sand pressure would result in their immediate collapse (Jenkins, 1992), and there is no evidence of especially early diagenetic cementation of the surrounding rock matrix. The other interpretation, that the organisms of Ermietta lived immersed in the sediment with margins growing upward (Buss and Seilacher, 1994), is contradicted by similar proportions between particular morphologic structures in specimens of different size. They apparently grew in their whole volume, not marginally. Growth increments on the specimens surface are also lacking.

TAPHONOMIC INTERPRETATION OF ERMIETTA SHAPE VARIABILITY
Although spatial relationships between particular structures in the bodies remain constant, and only a single species is represented in the fauna (Jenkins, 1992), the shapes of particular speci-
mens of Ernieta show great variation (Fig. 2). The shape transformations resemble consecutive stages of sinking of denser bodies in a lighter fluid. Such an interpretation is strongly supported by the presence of an internal fill of sand in the fossils (Fig. 3). They were obviously objects of a higher density than the surrounding hydrated muddy sediment. It is thus proposed that the Ernieta sand-filled bodies traveled across the hydrated mud from its surface (hemi- sphere load distribution), through its interior (parabolic or spatulate tip), to the boundary with the underlying, already dehydrated bed (at which the tip flattens). This taphonomic sequence closely approaches the phenomenon of a density-controlled movement within soft sediments with reversed density gradients, responsible for load casts (Birkmeyer, 1958; Allen, 1984), a phenomenon that is common in fluvial sediments and has been experimentally proven (Cegla and Dzulynski, 1970; Anketell et al., 1970). Some artificially produced drop structures (Cegla and Dzulynski, 1970) exactly match the shapes observed in the population of Ernieta. A similar interpretation has been proposed for the Early Cambrian “sand corals” by Jenisc (1997, p. 23): according to him, those structures “formed by sediment that foundered into mud similar to the formation of pseudodoliolites.”

The origin of the sand load cannot be directly inferred from the limited available evidence, but this does not significantly interfere with the proposed interpretation of the nature of the bodies. It is possible that the organic membrane of Ernieta was loaded with sediment while sinking within a storm-suspended cloud of sediment, in a way similar to that proposed for Peraidinium. Originally, the chambered body wall of Ernieta could have been completely flat. The loaded bodies reached the base of the bed faster than the suspended grains, their gradation corresponding to the order of deposition. Those specimens that accumulated their sand load in the center penetrated the underlying hydrated mud layer. This requires that there was a gradation from coarse sand to increasingly fine sediment above the bed with preserved Ernieta bodies. This cannot be confirmed because the block was collected from rock debris. Artificially produced sand tongues should also be present between the Ernieta bodies, which is not the case, and this seems to be the main weakness of this interpretation. The alternative is that the organic wall of Ernieta had been initially completely filled with sand, and subsequently transported within a mass flow down the slope to a deeper region dominated by muddy sediment. In this interpretation, the fossilizing structure should be at least cup-like if not spherical; otherwise the sand load would be lost in transport. On its way to the muddy bottom, the fluidized mud completely or partially replaced the sand fill. The patches of sand grains in the middle part of their sediment fill may represent floating clasts within the fluidized mud (Nichols et al., 1994), which requires some cohesion between the sand grains within the original sand fill, perhaps by organic material derived from the decomposition of soft tissues of the animal. Only those specimens that preserved their sand fill at least partially were involved in subsequent events.

According to J. P. Grozinger and P. Myrow (1999, personal communication), immediately above and below the bed that produced the Ernieta specimens are many beds with well-developed ball and pillow structures. The succession, which is exclusively in shallow-shelf facies, is dominated by storm-emplaced beds, many of which show signs of soft-sediment deformation. This makes the first interpretation of the origin of Ernieta fossils much more plausible.

Metazoa with nonmineralized organic walls are known to fossilize in sandstones of not only Vendian, but also Cambrian ages (e.g., extuvia of Xenastis [Dzik and Krumbiegel, 1989], and skeletons of the edloniids [Dzik, 1994; Dzik et al., 1997]), indicating a persistence of taphonomically similar conditions. The conditions of fossilization in post-Cambrian time must have been different from today’s, presumably because of the lack of efficient decomposers which would have led to the destruction of all organic skeletons. During late diagenetic stages, the organic membranes of Ediacaran metazoa must have decomposed relatively easily, and did not leave behind a carbonate film, which distinguishes them from the associated multicellular plants whose protective tissues are impregnated with resistant polymers (Waggoner, 1995). Only less-resistant building materials, such as polysaccharides (cellulose, chitin) or polypeptides (collagen, elastin and its analogues), can be considered for the walls of the Ediacaran fossils.

Biological nature of Ernieta

The deformation of the membranous walls of Ernieta involved not only bending and folding, but also significant expansion of its regions by the internal sand load and shrinking of its upper ends. The material that composed the wall was thus not only flexible, but also elastic. This makes Ernieta different from the flexible but not-so-elastic body covers of Xenastis or the edloniids. The Ernieta wall was thus not chitinous. The most likely biological material that can be as elastic as that in the Namibian organisms is collagen (perhaps with a contribution from elastin or its invertebrate analogues; McConnell et al., 1996). It is the main
component of membranes underlying epithelial and muscular tissues in the metazoan body, and it enables contractile cells and tissues to perform their functions (Pedersen, 1991).

For example, the basement membrane in the Chaetognatha, which consists of the basal laminae of the epidermis and muscle cells and a layer of collagenous fibers that are obliquely oriented in alternating directions, forms a sort of exoskeleton that is both firm and flexible (Kapp, 1991; Douvet, 1991; Shin, 1997). The coelomic cavities of the chaetognaths develop as muscular units, their walls composed of myoepithelial cells. Similarly organized is the fibrous layer of the dermis and the notochord sheath in Branchiostoma (Briggs and Keur, 1994; Ruppert, 1997). These collagenous sheaths are much more resistant to decay than other soft tissues and, remarkably, as a result of decay of the muscle blocks in Branchiostoma, the myoepithelial connective tissue of the dermis create three-dimensional "boxes" within which the muscles shrink and collapse (Briggs and Keur, 1994). The Branchiostoma myomeres alternate at their dorsal contact (Simonetta and Insom, 1993), probably to attain the most geometrically and mechanically stable positions. This is exactly the situation observed in Ernieta, except for its much larger size and, consequently, a proportionally greater thickness of the sheath.

The most reasonable interpretation of Ernieta wall chambers thus seems to be that the membrane was collagenous and that it enclosed some muscular units. Such an extensive and resistant basal membrane implies a connection with a strong muscular system, as those structures are functionally connected in recent metazoans (Pedersen, 1991). If so, Ernieta chambers formed a sheath of serial myomeres or perhaps empty muscular vesicles, resembling those in the embryos of Branchiostoma. A comparable chambered organization also characterizes other Ediacaran organisms (Schlichter, 1989; Narbonne et al., 1997; Fedonkin, 1985; Ivanov and Grzhimbikin, 1997), suggesting that they represent fossilized collagenous basement membranes of muscular units of an internal hydraulic skeleton. They do not provide enough anatomical information to restore the complete anatomy of those organisms. Such evidence is available for other chambered Ediacaran organisms (especially Dickinsonia; reviewed by Jenkins, 1992; Dzik, 1999), but they are not necessarily closely related to Ernieta.

CONCLUSIONS

The absence of decomposing agents may have played a crucial role in the preservation of the
Ediacaran fauna. I suggest that the appearance of collagen-consuming decomposers led to the loss of preservation typical of those peculiar kind of fossils. The rise of the Ediacaran fauna thus seems to be mostly a result of the evolutionary development of an internal hydraulic skeleton with metameric muscular chambers enclosed by a collagenous basement membrane. Many of the Ediacaran fossils apparently represent only such an internal collagenous skeleton, not truly soft bodies. Organic membranes and cuticles were relatively resistant to decay in the Precambrian and Early Cambrian taphonomic conditions. The appearance and gradual diversification of decomposers with abilities to disintegrate collagenous and polyaccharide sheaths made this kind of preservation less and less likely. Today arthropods are the main benthic marine decomposers and their Early Cambrian evolutionary radiation seems to parallel the decrease in abundance of the Ediacaran-like fossils.

ACKNOWLEDGMENTS
I thank Hans Pfug for allowing me to examine his collection in Leib and for his hospitality while I was at his home. My stay there was supported by the Alexander von Humboldt Foundation. The paper owes much to comments by, and discussions with, sedimentologists Stanisław Dzityński (Jagiellonian University, Cracow), Pieter Roniewicz, and Maciej Bąbel (both Warsaw University), Tomasz Baumliller (University of Michigan, Ann Arbor) read the manuscript and helped to improve it. I also thank John P. Grozinger (Massachusetts Institute of Technology) and Stefan Bengtson (Naturhistoriska Riksmuseet, Stockholm) for reviews. The study was supported by Polish Committee of Scientific Research grant 6 PO3D 1013 13.

REFERENCES CITED